3D Java Game Programming — Episode 8

Building a Java First-Person Shooter

Episode 8 - Alpha Support and More [Last Update 5/6/2017]

Objective
In this episode we introduce a game timer and ensure that the display screen (minus border insets) is
exactly WIDTH x HEIGHT.

URL
https://www.youtube.com/watch?v=TQUzsyWmQ14

Discussion

Game Timer
CHERNO introduced a new class name Game.java. | would have preferred something like
GameTimer.java but | suppose the intention will be to put into this class the game elements.

Create the following new class:

Table 1 - Game.java

package com.mime.minefront;
public class Game {

public int time;
public void tick() {
time += 10;

}

The Screen.java render () method will now be updated to use the above tick () method rather
than depend on the System.currentTimeMillis () method. The above will ensure that the
game clock is what is controlling how things move on the screen.

Table 2 - Updated Screen.java

package com.mime.minefront.graphics;
import java.util.Random;

import com.mime.minefront.Game;
public class Screen extends Render {

private Render test;
private final int BLOCK_SIZE = 256; // temporary used for testing

https://www.youtube.com/watch?v=TQUzsyWmQ14

3D Java Game Programming — Episode 8

public Screen(int width, int height) {
super(width, height);
Random random = new Random();
test = new Render(BLOCK_SIZE, BLOCK_SIZE);
for (int i=0; i < BLOCK_SIZE * BLOCK SIZE; i++) {
test.pixels[i] = random.nextInt();

}

public void render(Game game) {
// let's first clear the screen
for (int i = 9; i < (width * height); i++) {
pixels[i] = ©;
}
int xCenter
int yCenter

(width - BLOCK_SIZE) / 2;
(height - BLOCK_SIZE) / 2;

for (int i = 0; i < 30; i++){
int animl = (int) (Math.sin(((game.time % 1000 + i) / 1000.0) *
2 * Math.PI) * 100);
int anim2 = (int) (Math.cos(((game.time % 1000 + i) / 1000.0) *
2 * Math.PI) * 100);
draw(test, xCenter + animl, yCenter + anim2);

}

In addition, Display class tick () method will be updated to invoke the game.tick () method.
private void tick() {

game.tick();
}

The above requires the introduction of a new variable game into the Display class. In addition, it will
need to be initialized in the Display constructor class.

This is the complete Display.java class:

Table 3 - Display.java for episode 8

package com.mime.minefront;

import java.awt.Canvas;

import java.awt.Graphics;

import java.awt.Insets;

import java.awt.image.BufferStrategy;
import java.awt.image.BufferedImage;
import java.awt.image.DataBufferInt;

import javax.swing.JFrame;

3D Java Game Programming — Episode 8

import javax.swing.SwingUtilities;

import com.mime.minefront.graphics.Screen;

public class Display extends Canvas implements Runnable{
private static final long serialVersionUID = 1L;

public static final int WIDTH = 809;
public static final int HEIGHT = 600;
public static final String TITLE = "Minefront Pre-Alpha 0.01";

public static final int FRAMES_PER _SECOND = 60;

private Thread thread;
private boolean running = false; // indicates if the game is running or not

private Screen screen;
private Game game;

private BufferedImage img;
private int[] pixels;

public Display() {
screen = new Screen(WIDTH, HEIGHT),
img = new BufferedImage(WIDTH, HEIGHT, BufferedImage.TYPE_INT_RGB);
pixels = ((DataBufferInt)img.getRaster().getDataBuffer()).getData();
game = new Game();

private void start() {
if (running) {
return;

}

running = true;

thread = new Thread(this);
thread.start();
System.out.println("Working");

}

private void stop() {
System.out.println("stop() method invoked.");
if (!running) {

return;
}
running = false;
try {

thread.join();

} catch (Exception e) {
e.printStackTrace();
System.exit(0);

3D Java Game Programming — Episode 8

private void tick() {
game.tick();
}

private void render() {
BufferStrategy bs = this.getBufferStrategy();
if (bs == null) {
createBufferStrategy(3);
return;

}

screen.render(game);

for (int i = @; i < WIDTH * HEIGHT; i++) {
pixels[i] = screen.pixels[i];

}

Graphics g = bs.getDrawGraphics();

g.drawImage(img, @, ©, WIDTH, HEIGHT, null);

g.dispose();

bs.show();

@Override
public void run() {
// holds the number of frames per second
int frames = 0;
// accumulates time
double unprocessedSeconds = 0;
// start counting
long previousTime = System.nanoTime();
// ideal frame rate 60 ticks/sec
double secondsPerTick = 1 / 60.0;
// the number of ticks which should be 60 ticks/second
// and we report the frame rate to the screen
int tickCount = 9;
// our signal indicator that a frame should be rendered
boolean ticked = false;

while(running) {
// holds the time now
long currentTime = System.nanoTime();
// holds the time between now and last time
long passedTime = currentTime - previousTime;
// remember for the next check
previousTime = currentTime;
// real time elapsed
unprocessedSeconds += passedTime / 1000000000.0;

// has 1/60th sec elpased - i.e. a tick?

while (unprocessedSeconds > secondsPerTick) {
tick(); // do the update!
// remember the time that went over a tick
unprocessedSeconds -= secondsPerTick;

4

3D Java Game Programming — Episode 8

// signal to render a frame to the screen
ticked = true;
tickCount++;
// 1s it time to print the frame rate to the screen
if (tickCount % 60 == 0) {
System.out.println("" + frames + " fps");
System.out.println("w: " + this.getWidth() + ";h: "
+ this.getHeight());
// add a fudge factor
previousTime += 1000;
frames = 0;
}
}

// always draw the screen as fast as possible
render();
frames++;

public static void main(String[] args) {
Display game = new Display();
JFrame frame = new JFrame();
frame.add(game);
frame.setTitle(TITLE);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setSize(WIDTH, HEIGHT);
frame.setlLocationRelativeTo(null);
frame.setResizable(false);
frame.setVisible(true);

System.out.println("Running...");
game.start();

This video episode introduces a horrible kludge in order to get the canvas to match our expected size of
WIDTH x HEIGHT. | have learned a bit since | did the video four years back — how to measure the
canvas size. | have decided the best approach was to re-do the code a bit. | changed the Display
class so that is our JFrame and have it create and manage a Canvas object directly. Here is the new
version of Display.java

package com.mime.minefront;

import java.awt.Canvas;

import java.awt.Dimension;

import java.awt.Graphics;

import java.awt.Insets;

import java.awt.image.BufferStrategy;

3D Java Game Programming — Episode 8

import
import

import
import

import

public

java.awt.image.BufferedImage;
java.awt.image.DataBufferInt;

javax.swing.JFrame;
javax.swing.SwingUtilities;

com.mime.minefront.graphics.Screen;

class Display extends JFrame implements Runnable{

private static final long serialVersionUID = 1L;

public static final int WIDTH = 800;
public static final int HEIGHT = 600;
public static final String TITLE = "Minefront Pre-Alpha 0.01";

private Thread thread;
private boolean running = false; // indicates if the game is running or not

private Canvas canvas;
private Screen screen;
private Game game;

private BufferedImage img;
private int[] pixels;

public Display() {

}

// Set the preferred size of the Canvas

canvas = new Canvas();

Dimension size = new Dimension(WIDTH, HEIGHT);
canvas.setPreferredSize(size);

canvas.setMaximumSize(size);

canvas.setMinimumSize(size);

screen = new Screen(WIDTH, HEIGHT);

game = new Game();

img = new BufferedImage(WIDTH, HEIGHT, BufferedImage.TYPE_INT_RGB);
// Get the pixel array of the the ACTUAL SCREEN

pixels = ((DataBufferInt)img.getRaster().getDataBuffer()).getData();

private void start() {

}

if (running) {
return;

}

running = true;

thread = new Thread(this);
thread.start();
System.out.println("Working");

private void stop() {

System.out.println("stop() method invoked.");
if (!running) {
return;

}

3D Java Game Programming — Episode 8

running = false;

try {
thread.join();

} catch (Exception e) {
e.printStackTrace();
System.exit(0);

}

private void tick() {
game.tick();

}

private void render() {
BufferStrategy bs = canvas.getBufferStrategy();
if (bs == null) {
canvas.createBufferStrategy(3);
return;

}

screen.render(game);

// draw 'screen' to the REAL SCREEN

for (int i = @; i < WIDTH * HEIGHT; i++) {
pixels[i] = screen.pixels[i];

}

Graphics g = bs.getDrawGraphics();

g.drawImage(img, @, ©, WIDTH, HEIGHT, null);

g.dispose();

bs.show();

@Override
public void run() {
// holds the number of frames per second
int frames = 0;
// accumulates time
double unprocessedSeconds = 0;
// start counting
long previousTime = System.nanoTime();
// ideal frame rate 60 ticks/sec
double secondsPerTick = 1 / 60.0;
// the number of ticks which should be 60 ticks/second
// and we report the frame rate to the screen
int tickCount = 9;
// our signal indicator that a frame should be rendered
boolean ticked = false;

while(running) {
// holds the time now
long currentTime = System.nanoTime();
// holds the time between now and last time
long passedTime = currentTime - previousTime;
// remember for the next check
previousTime = currentTime;

7

3D Java Game Programming — Episode 8

// real time elapsed
unprocessedSeconds += passedTime / 1000000000.0;

// has 1/60th sec elpased - i.e. a tick?
while (unprocessedSeconds > secondsPerTick) {
tick(); // do the update!
// remember the time that went over a tick
unprocessedSeconds -= secondsPerTick;
// signal to render a frame to the screen
ticked = true;
tickCount++;
// 1s it time to print the frame rate to the screen
if (tickCount % 60 == 0) {
System.out.println("" + frames + " fps");
System.out.println("w: "
" + canvas.getHeight());
// add a fudge factor
previousTime += 1000;
frames = 0;
}
}
// always draw the screen as fast as possible
render();
frames++;

}

public void resizeToInternalSize(JFrame frame, int internalWidth, int
internalHeight) {
Insets insets = frame.getInsets();
final int newWidth = internalWidth + insets.left + insets.right;
final int newHeight = internalHeight + insets.top + insets.bottom;

Runnable resize = new Runnable() {
public void run() {
frame.setSize(newWidth, newHeight);
}

}s

if (SwingUtilities.isEventDispatchThread()) {

try {

SwingUtilities.invokeAndiWait(resize);
} catch (Exception e) {

// ignore ...but will be no no if using Sonar!
}

} else {
resize.run();
}

frame.validate();

public static void main(String[] args) {
Display game = new Display();

+ canvas.getWidth() + ";h:

3D Java Game Programming — Episode 8

game.add(game.canvas);

game.setTitle(TITLE);
game.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
game.pack();

game.setlLocationRelativeTo(null);
game.setResizable(false);

game.setVisible(true);

// ensure the display canvas is the right size!
game.resizeToInternalSize(game, WIDTH, HEIGHT);

System.out.println("Running...");
game.start();

The above works the same but with no screen kludges.

Setting the Canvas to WIDTH x HEIGHT

The Display.java class shown in the above table highlights a new method that | added to the class —
resizeToInternalSize() .

This details on how resizeToInternalSize () was discussed in my episode 1 notes. What we are
basically doing is ensuring that the canvas created (Display) comes to exactly WIDTH x HEIGHT. In all
previous episodes it was slightly less than that because of the pixels the frame window was taking.

My version of the code is different. Nothing irks me more than kludgy code being added when teaching

I”

someone new concepts. Do “real” programmers ever add kludgy code? Sure. But we know we have
encumbered a debt of sorts. We have to go back and figure out what we don’t understand well enough
to avoid such things. When teaching someone something new there is never any reason to do such

things. It can only mean we are not ready to teach the subject matter.

Last comment: CHERNO went back to discussing alpha but he has not figured out yet that he is losing
color in the “colored square” because he is eliminating too many pixels (probability dictates it is about
half of them).

Test how Alpha should work
We are going to create a new image where black pixels will be used to indicate “don’t draw pixel” in
order to draw a donut as shown below:

3D Java Game Programming — Episode 8

Figure 1 - Red donut

In order to make sure it is truly working we will make the background color white and print many
versions as we did the “colored squares.”

Here are the changes | made to the code to “see” how alpha (the correct version | implemented) truly
works.

= Copy EPISODE_08 to EPISODE_08_B. All changes describe change to EPISODE_08_B.

We only change one class the Screen.java class to print a red donut as shown above.

Table 4 - Screen.java (that print test donut)

package com.mime.minefront.graphics;
import java.util.Random;

import com.mime.minefront.Game;
public class Screen extends Render {

private Render test;
private final int BLOCK SIZE = 256; // temporary used for testing

public Screen (int width, int height) {
super (width, height);
Random random = new Random() ;
test = new Render(BLOCK_SIZE, BLOCK_SIZE);
for (int i=0; i < BLOCK SIZE * BLOCK SIZE; i++) {
test.pixels[i] = random.nextInt();
}
createDonut (test) ;

}

private boolean isPointInCircle (int xCenter, int yCenter, int radius,
int x, int y) {
return ((x-xCenter) * (x-xCenter) + (y - yCenter) * (y -
yCenter)) < (radius * radius);

}

private void createDonut (Render test) {
int circleRadius = 75;

10

3D Java Game Programming — Episode 8

// make the entire test area black

for (int 1i=0; 1 < BLOCK_SIZE 2 BLOCK_SIZE; i++) {
test.pixels[i] = 0;

}

// draw the red circle
int xCenter = BLOCK SIZE / 2;
int yCenter = xCenter;
for (int y=0; y < BLOCK SIZE; y++) {
for (int x=0; x < BLOCK SIZE; x++) |
if (isPointInCircle (xCenter, yCenter, circleRadius,

X, ¥)) A
test.pixels[x + (BLOCK SIZE*y)] = 0x00££0000;
}
}
}
// now draw inner black circle
circleRadius = 25;
for (int y=0; y < BLOCK SIZE; y++) {
for (int x=0; x < BLOCK_SIZE; x++) {
if (isPointInCircle (xCenter, yCenter, circleRadius,
x, y)) A

test.pixels[x + (BLOCK SIZE*y)] = 0x00000000;

}

public void render (Game game) {
// let's first clear the screen
for (int i = 0; i < (width * height); i++) {
pixels[i] = Oxffffff;
}

int xCenter (width - BLOCK SIZE) / 2;
int yCenter = (height - BLOCK SIZE) / 2;

for (int i = 0; 1 < 30; i++){

int animl = (int) (Math.sin(((game.time % 1000 + 1) /

1000.0) * 2 * Math.PI) * 100);
int anim2 = (int) (Math.cos(((game.time % 1000 + 1) /

);

1000.0) * 2 * Math.PI) * 100
draw (test, xCenter + animl, yCenter + anim2);

}

The render screen is essentially the same except for the fact that the screen is cleared to white. This will
prove that a “black” pixel in our test Render object is not drawn to the screen.

11

3D Java Game Programming — Episode 8

We created two new methods. The createDonut creates a red donut shape into the test area (I could
have done this all in one loop) the test area is completely made black then a red circle is drawn and then
a smaller black circle (our donut) is drawn within it in order to get the donut shape outlined in the figure
above.

When you run the program you will see the following:

Minefront Pre-Alpha 0.01

Figure 2 - Drawing a donut to illustrate how alpha works

12

