
3D Java Game Programming – Episode 5

1

Building a Java First-Person Shooter

Episode 5 – Playing with Pixels! [Last update 5/2/2017]

Objective

This episode does not really introduce any new concepts. Two software defects are fixed (one poorly)

and we play around with drawing pixels by animating the 256 x 256 random colored pixels we created in

the last episode.

URL

https://www.youtube.com/watch?v=dwn_UrItwfw&index=6&list=PL656DADE0DA25ADBB

Discussion

Fix Defect #1 Drawing off the target Render object

The first defect to fix is in the draw() method in the Render class. As long as the xOffset, and

yOffset stays within the target Render object everything works.

Figure 1 - Using draw() to move 256x256 to the top

We had no problem with the draw() command in the last episode since the entire 256 x 256 Render

object we copied into the target Render object (which was 800 x 600) fit since we copied to from the

source (0,0), . . . (255, 255) to the same location in the target Render object.

But if the xOffset or yOffset starts with a value that will have eventually have us try to insert a

pixel in the source in an area outside the target the program will generate an exception.

xOffset, yOffset

Figure 2 - Using draw() where the source is outside the range of the target

https://www.youtube.com/watch?v=dwn_UrItwfw&index=6&list=PL656DADE0DA25ADBB

3D Java Game Programming – Episode 5

2

The above figure illustrates the problem. If the xOffset and yOffset starts at (700, 540) the drawing starts

fine until we get beyond the pixels defining the target Render object (in gray).

You can test this out by changing the render method in the Screen class to:

 public void render() {
 draw(test, 700, 540);
 }

To see where the code breaks add a println statement to the Render draw() method:

Table 1 - Render's draw() method

public void draw(Render render, int xOffset, int yOffset) {
for (int y = 0; y < render.height; y++) {

int yPix = y + yOffset;
for (int x = 0; x < render.width; x++) {

int xPix = x + xOffset;
System.out.println("yPix: " + yPix + "\txPix: " + xPix);

pixels[xPix + yPix * width] =
render.pixels[x + y * render.width];

}
}

}

If you run the above you will see the following output sent to the console:

Table 2 - Output from program

yPix: 599 xPix: 786
yPix: 599 xPix: 787
yPix: 599 xPix: 788
yPix: 599 xPix: 789
yPix: 599 xPix: 790
yPix: 599 xPix: 791
yPix: 599 xPix: 792
yPix: 599 xPix: 793
yPix: 599 xPix: 794
yPix: 599 xPix: 795
yPix: 599 xPix: 796
yPix: 599 xPix: 797
yPix: 599 xPix: 798
yPix: 599 xPix: 799
yPix: 599 xPix: 800
Exception in thread "Thread-3" java.lang.ArrayIndexOutOfBoundsException: 480000
 at com.mime.minefront.graphics.Render.draw(Render.java:22)
 at com.mime.minefront.graphics.Screen.render(Screen.java:19)
 at com.mime.minefront.Display.render(Display.java:69)
 at com.mime.minefront.Display.run(Display.java:85)
 at java.lang.Thread.run(Thread.java:619)

3D Java Game Programming – Episode 5

3

As you can see from the above since the target Render object ranges from (0,0) . . . (799, 599) the xPix

value of 800 into the target “craps” the program out we get an “ArrayIndexOutOfBoundsException.”

The fix is to add checks against the target Render objects width and height.

Table 3 - Fixing Render's draw() method

 public void draw(Render render, int xOffset, int yOffset) {
 for (int y = 0; y < render.height; y++) {
 int yPix = y + yOffset;
 if (yPix < 0 || yPix >= height) continue;
 for (int x = 0; x < render.width; x++) {
 int xPix = x + xOffset;
 if (xPix < 0 || xPix >= width) continue;
 pixels[xPix + yPix * width] =
 render.pixels[x + y * render.width];
 }
 }
 }

After fixing the above and running the program again we see the following screen:

Figure 3 - Result of fixing defect #1

Fix Defect #2 Clearing the screen

The first thing we will do is demonstrate the second software defect we have – we don’t clear the screen

before drawing. This is not noticeable as long as things are not moving or being animated on the screen.

The first thing we will is center the randomly colored 256 x 256 block on the screen by setting the offsets

so that the middle of the block falls into the middle of the screen.

3D Java Game Programming – Episode 5

4

Table 4 - Screen.java version with centered block

package com.mime.minefront.graphics;

import java.util.Random;

public class Screen extends Render {

 private Render test;
 private final int BLOCK_SIZE = 256; // temporary used for testing

 public Screen(int width, int height) {
 super(width, height);
 Random random = new Random();
 test = new Render(BLOCK_SIZE, BLOCK_SIZE);
 for (int i=0; i < BLOCK_SIZE * BLOCK_SIZE; i++) {
 test.pixels[i] = random.nextInt();
 }
 }

 public void render() {
 int xCenter = (width - BLOCK_SIZE) / 2;
 int yCenter = (height - BLOCK_SIZE) / 2;

 draw(test, xCenter, yCenter);
 }
}

Note, that unlike the video tutorial version we introduced the use of the constant BLOCK_SIZE. This will

allow us to play with the size of the square block while we are figuring out how the animation works.

3D Java Game Programming – Episode 5

5

Figure 4 - Centered colored square

We will now introduce animation that will only affect the starting xOffset. We will make use of two new

Java methods:

System.currentTimeMillis()

The method System.currentTimeMillis() returns the current time in milliseconds since January 1, 1970.

So it basically returns some number that keeps getting larger and larger.

The following program shows you the result of running in one moment in time:

Table 5 - TestCurrentTimeMillis

package com.mime.minefront.testarea;

public class TestCurrentTimeMillis {

 public static void main(String[] args) {
 for (int i=0; i < 10; i++) {
 System.out.println(System.currentTimeMillis());
 }
 }
}

Table 6 - Result of run #1

1356703521896
1356703521897

3D Java Game Programming – Episode 5

6

1356703521897
1356703521897
1356703521897
1356703521897
1356703521897
1356703521897
1356703521897
1356703521897

Later in time (let’s figure out how much later…) the results:

Table 7 - Result of run #2

1356703651287
1356703651288
1356703651288
1356703651288
1356703651288
1356703651288
1356703651288
1356703651288
1356703651288
1356703651288

The accuracy of the data returned varies. How time elapsed between the first and second run?

(1356703651288 – 1356703521897) ms * (1 sec / 1000 ms) * (1 min /60 sec) = 2.2 min

The first animation equation used by CHERNO the above value (which you should see as an increasing

large number) is taken mod (%) 1000.0. This means that

(System.currentTimeMillis() % 1000.0

will generate a number from 0..999

Math.sin(double a)

This function returns the trigonometric sine of an angle. The argument a is in radians.

3D Java Game Programming – Episode 5

7

Table 8 - What is radians?

What is radians?
From: http://en.wikipedia.org/wiki/Radian
The radian is the standard unit of angular measure, used in many areas of
mathematics. An angle’s measurement in radians is numerically equal to the
length of a corresponding arc of a unit circle.

The circumference of the unit circle is 2π so the specification of an angle
ranges from 0 … 2π (matches our concept of degrees from 0..360o).

Figure 5- Sine function

As you can see from the above figure the sine function will go from 0..1..-1 and back to 0 while it moves

from 0 radians to 2π radians.

In using the following equation:

Math.sin(((currentTime % 10000.0 + i) / 10000) * Math.PI * 2) * 100

We will be generating a value of sine that goes from -1..0..1. The modulo (%) function guarantees that

we will go back and forth that is we will oscillate back and forth since (System.currentTimeMillis() %

1000.0) will go back and forth from 0..999 as the time progresses forward. Let’s refer to this part of

the equation as our timeModulo.

This is a neat trick. Let’s imagine that timeModulo gives us 0. Then 0/1000 wil be 0 and that time

Math.PI * 2 is just 0 which will generate a Math.sin(0) value of 0. This is in turn multiplied to 100 to give

us 0 which means anim = 0. If on the next invocation of render() the timeModulo moves up to let’s say

100. Then we get 100/1000 or .1. Which when multiplied by Math.PI * 2 gives us radian value … heck

let’s write a program to see what is going on!

To see how anim will give us an oscillating value from -100 .. 100. I wrote the following program:

http://en.wikipedia.org/wiki/Radian

3D Java Game Programming – Episode 5

8

Table 9 - TestSimpleOsillator.java

package com.mime.minefront.testarea;

public class TestSimpleOsillator {
 public static void main(String[] args) throws Exception {
 for (int i=0; i < 10; i++) {
 long currentTime = System.currentTimeMillis();
 int timeModulo = (int) (currentTime % 1000);
 double fracTime = timeModulo / 1000.0;
 double radianValue = fracTime * Math.PI * 2;
 double sinValue = Math.sin(radianValue);
 int anim = (int) (sinValue * 100);

 System.out.println("time\ttimeModulo\tfracTime\trandianValue\tsinValue\tanim")
;
 System.out.println(""+currentTime +"\t" + timeModulo + "\t" +
fracTime +"\t"
 + radianValue+"\t"+sinValue +"\t"+anim + "\t");
 Thread.sleep(100);
 }
 }
}

Which creates the following table (note: With the loop I generate only 10 values and sleep for 100 ms

before heading back for the next iteration.)

currentTime timeModulo fracTime radianValue sinValue Anim value
1356712597666 666 0.666 4.184601 -0.863923 -86
1356712597767 767 0.767 4.81920 -0.994300 -99
1356712597867 867 0.867 5.447521 -0.741741 -74
1356712597967 967 0.967 6.075840 -0.205862 -20
1356712598067 67 0.067 0.420973 0.408649 40
1356712598167 167 0.167 1.049291 0.867070 86
1356712598267 267 0.267 1.677610 0.994300 99
1356712598367 367 0.367 2.305929 0.741741 74
1356712598467 467 0.467 2.934247 0.205862 20
1356712598567 567 0.567 3.562566 -0.408649 -40

As you can see this is a cool trick to get some value (in this case our xOffset) to move smoothly between

two points -100 … 100 or xCenter – 100 …xCenter + 100. So there is never any reason you can’t get that

game character (esp. the villains or boiling pots of oil) to oscillate on the screen.

3D Java Game Programming – Episode 5

9

Figure 6 - Megaman game screen

In fact, I recall many of the easy obstacles in Megaman (and other games) only requiring that you figure

out the rate in which things move up or down or back and forth in a similar oscillating fashion.

Playing with Animation

At this point you should be comfortable with the formula below and what it does.

int anim = (int) (Math.sin(((System.currentTimeMillis() % 1000.0) / 1000) * Math.PI
* 2) * 100);

We are basically moving along the sine wave (see Figure 5 above) and multiplying the result with 100.

Here is the updated version of Screen.java:

Table 10 - Screen.java

package com.mime.minefront.graphics;

import java.util.Random;

public class Screen extends Render {

 private Render test;
 private final int BLOCK_SIZE = 256; // temporary used for testing

 public Screen(int width, int height) {
 super(width, height);
 Random random = new Random();
 test = new Render(BLOCK_SIZE, BLOCK_SIZE);
 for (int i=0; i < BLOCK_SIZE * BLOCK_SIZE; i++) {
 test.pixels[i] = random.nextInt();
 }
 }

3D Java Game Programming – Episode 5

10

 public void render() {
 int xCenter = (width - BLOCK_SIZE) / 2;
 int yCenter = (height - BLOCK_SIZE) / 2;

 int anim = (int) (Math.sin(((System.currentTimeMillis() % 1000.0) /
1000) * Math.PI * 2) * 100);
 draw(test, xCenter + anim, yCenter);
 }
}

This result of this version is that the square will move left and right as the anim goes from -100 .. 100.

Figure 7 - Demonstration of oscillating square

The key point to the above example is to demonstrate how we are failing to clean up the screen

between screen renders. The way to solve the problem is quite simple. Before the render() function

invokes draw() it should first clear the entire Screen render area.

But before we insert the code to do this let’s discuss the various parts of the anim equation and what

changing them will do for us.

int anim = (int) (Math.sin(((System.currentTimeMillis() % 1000.0) / 1000) * Math.PI

* 2) * 100);

3D Java Game Programming – Episode 5

11

The 100 at the end is the portion or adjustment that is added to xCenter. If you wanted the colored

square to move further along the screen you would just need to adjust this value. For example if you

wanted to have it move 200 pixels to the left and right of the starting xCenter position just change the

value. Try it.

int anim = (int) (Math.sin(((System.currentTimeMillis() % 1000.0) / 1000) * Math.PI

* 2) * 100);

If you wanted to slow down the movement of the colored square then you would just need to make the

differences between each iteration smaller so that it will basically map to the same sine value. Try

changing the highlighted 1000.0 to 10000.0 and 1000 to 10000. You should see things slow down quite a

bit. This is because during each iteration more values are mapping into the same integer. It is like

clumping more values together because 0.00001 is effectively the same as 0.00002.

The last change CHERNO makes is to the value we multiply Math.PI by:

int anim = (int) (Math.sin(((System.currentTimeMillis() % 1000.0) / 1000) * Math.PI
* 2) * 100);

Changing this value to a value greater than 2 that is not a multiple of 2 (e.g. 3 or 5) will make the colored

square “jump”. This is because we have changed the sine wave as so it iterates before its cycle is

reached.

Figure 8 - Math.PI * 3

For example, if we use 3π notice how it “jumps” or hiccups at an unexpected place. This is another great

technique for introducing a “hiccup” in the movement of an object. A value less than 2π will just have it

cut short its cycle and return back to the start.

Before we fix the clear screen problem lets add a second animation variable (anim2) where we update

the yOffset value. Rather than using sin function we will use the cosine function.

3D Java Game Programming – Episode 5

12

Table 11 - Updated Screen.render() method

 public void render() {
 // let's first clear the screen
 //for (int j = 0; j < height)
 int xCenter = (width - BLOCK_SIZE) / 2;
 int yCenter = (height - BLOCK_SIZE) / 2;

 int anim = (int) (Math.sin(((System.currentTimeMillis() % 10000.0) /
10000) * Math.PI * 2) * 200);
 int anim2 = (int) (Math.cos(((System.currentTimeMillis() % 10000.0) /
10000) * Math.PI * 2) * 200);
 draw(test, xCenter + anim, yCenter + anim2);
 }

An interesting pattern will now emerge since the following principle is true about sine, cosine and a

circle:

Figure 9 - sine, cosine and living on a circle

As you can see by definition the (cos θ, sin θ)1 defines a point that resides on the circumference of the

unit circle.

The screen now looks like the image below.

1 Our x’s and y’s were reversed in this example but it does not make a difference …try reversing the sin and cos in
the program.

3D Java Game Programming – Episode 5

13

Figure 10 - xOffset and yOffset moving in a circular pattern

Clearing the Screen

Clearing the screen is quite simple and only requires that before we invoke the draw method in

Screen.render() method that we “black” out the screen.

Table 12 - Final version of Screen.render() for this episode

 public void render() {
 // let's first clear the screen
 for (int i = 0; i < (width * height); i++) {
 pixels[i] = 0;
 }
 int xCenter = (width - BLOCK_SIZE) / 2;
 int yCenter = (height - BLOCK_SIZE) / 2;

 int anim = (int) (Math.sin(((System.currentTimeMillis() % 10000.0) /
10000) * Math.PI * 2) * 200);
 int anim2 = (int) (Math.cos(((System.currentTimeMillis() % 10000.0) /
10000) * Math.PI * 2) * 200);
 draw(test, xCenter + anim, yCenter + anim2);
 }

3D Java Game Programming – Episode 5

14

The final version looks like the figure below:

B

Figure 11 - Clearing the screen between frames

One Last Thing

The last trick to look at was drawing multiple copies of the colored square where each version is slightly

offset from the previous one.

The trick is to create a loop that invokes the Render.draw() method several times and each time we

update the animation variables slightly. I have modified the code slightly from the video since I want to

use the same timeModulo in both statements.

3D Java Game Programming – Episode 5

15

Figure 12 - Drawing 200 times our colored square

The code to print the above and its shadow is the following:

Table 13 – Drawing 200 copies of the colored square

 public void render() {
 // let's first clear the screen
 for (int i = 0; i < (width * height); i++) {
 pixels[i] = 0;
 }
 int xCenter = (width - BLOCK_SIZE) / 2;
 int yCenter = (height - BLOCK_SIZE) / 2;

 long currentTime = System.currentTimeMillis();
 for (int i = 0; i < 200; i++){
 int anim = (int) (Math.sin(((currentTime % 10000.0 + i) / 10000)
* Math.PI * 2) * 200);
 int anim2 = (int) (Math.cos(((currentTime % 10000.0 + i) /
10000) * Math.PI * 2) * 200);
 draw(test, xCenter + anim, yCenter + anim2);
 }
 }

You should be suspicious about the fact that the previous figure does not look like it drew 200 pixel

squares. It definitely generated 200 colored squares but given how slow (10000.0) the timeModulo is

moving that means there are many overlaps.

3D Java Game Programming – Episode 5

16

Figure 13 - Increasing the timeModulo

When we change it from 10000.0 to 1000.0 we see that it appears to be more colored squares but the

fact is we are still only drawing 200 just spread out in a larger space.

Code

There were only two files updated in this episode.

Table 14 - Render.java

package com.mime.minefront.graphics;

public class Render {

 public final int width;
 public final int height;
 public final int[] pixels;

 public Render(int width, int height) {
 this.width = width;
 this.height = height;

3D Java Game Programming – Episode 5

17

 pixels = new int[width * height];
 }

 public void draw(Render render, int xOffset, int yOffset) {
 for (int y = 0; y < render.height; y++) {
 int yPix = y + yOffset;
 if (yPix < 0 || yPix >= height) continue;
 for (int x = 0; x < render.width; x++) {
 int xPix = x + xOffset;
 if (xPix < 0 || xPix >= width) continue;
 pixels[xPix + yPix * width] =
 render.pixels[x + y * render.width];
 }
 }
 }
}

And Screen.java

Table 15 - Screen.java

package com.mime.minefront.graphics;

import java.util.Random;

public class Screen extends Render {
 private Render test;

 public Screen(int width, int height) {
 super(width, height);
 Random random = new Random();
 test = new Render(256, 256);
 for (int i=0; i < 256 * 256; i++) {
 test.pixels[i] = random.nextInt();
 }
 }

 public void render() {
 // let's first clear the screen
 for (int i = 0; i < (width * height); i++) {
 pixels[i] = 0xFFFFFFFF;
 }
 int xCenter = (width - 256) / 2;
 int yCenter = (height - 256) / 2;

 long currentTime = System.currentTimeMillis();
 for (int i = 0; i < 200; i++){
 int anim = (int) (Math.sin(((currentTime % 10000.0 + i) / 10000)
* Math.PI * 2) * 200);
 int anim2 = (int) (Math.cos(((currentTime % 10000.0 + i) /
10000) * Math.PI * 2) * 200);
 draw(test, xCenter + anim, yCenter + anim2);
 }
 }

3D Java Game Programming – Episode 5

18

}

