
3D Java Game Programming – Episode 1

1

Building a Java First-Person Shooter

Episode 1 – Windows [Last update: 5/03/2017]

Objectives

In this episode you are presented with enough information to:

 Using the Eclipse IDE

 Create a window

 Set it to a certain size

 Have it close cleanly

 Display a title in the window

Video URL

https://www.youtube.com/watch?v=iH1xpfOBN6M

Discussion

What is an IDE?

A hot topic of discussion among professional programmers is the tool or application they use for

software development.

The top Java development IDEs are Eclipse, NetBeans, and IntelliJ. A good IDE is invaluable in the

creation and maintenance of code. I highly recommend that you obtain and download Eclipse as you

follow along the videos and these notes. Episode 0 lists URLs on the Internet to learn how to build Java

projects with Eclipse.

Organizing our Workspace

I have decided to create an Eclipse workspace named CHERNO_01 to hold a Java project for each

Episode. At the start of every episode I copy the previous episode’s Java project into a new one so that

we have continuity of our work product as we view the video episodes. There will be side-projects

unrelated to the video episode but used to clarify a new concept.

3D Java Game Programming – Episode 1

2

Figure 1 - Collection of EPISODE Java projects

Each episode Java project contains the video episode’s final code. The only non-episode package will be

test.examples. The test.examples will contain the additional programs we create to test concepts.

Creating our new Project

What version of Java?

Make sure you have Java 1.6 or greater installed.

The Cherno Workspace

STEP 1:

Create a new Java project named EPISODE_01.

STEP 2:

Create a new class com.mime.minefront.Display that extends the Canvas class. This class will

be the “kickoff” class for our game, that is, it will contain a main() method that will be invoked by the

platform operating system (OS).

STEP 3:

Enter the following code, compile and execute.

Table 1 – Display.java (version #1)

package com.mime.minefront;

import java.awt.Canvas;
import javax.swing.JFrame;

public class Display extends Canvas {

 private static final long serialVersionUID = 1L;

 public static final int WIDTH = 800;
 public static final int HEIGHT = 600;
 public static final String TITLE = "Minefront Pre-Alpha 0.01";

3D Java Game Programming – Episode 1

3

 public static void main(String[] args) {
 Display game = new Display();
 JFrame frame = new JFrame();
 frame.add(game);
 frame.setTitle(TITLE);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(WIDTH, HEIGHT);
 frame.setLocationRelativeTo(null);
 frame.setResizable(false);
 frame.setVisible(true);

 System.out.println("Running...");
 }
}

Figure 2 - The Minefront application window

How the code works

AWT and Swing

The code uses two classes from two different libraries. The first class java.awt.Canvas comes from

what is referred to as the AWT library. AWT stands for Abstract Window Toolkit. This library

came with the original or first version of Java (1995). AWT provided the “windowing, graphics and user-

interface widget toolkit.” So it is the library to use to create any GUI application that is, applications with

windows, button, menus and textboxes. In order to come up with something very quickly that could

3D Java Game Programming – Episode 1

4

provide graphic functionality across many machines and platforms AWT was purposely designed as a

thin layer between Java and the actual platform1’s graphical APIs. That is the graphic component

(windows, buttons, menus, etc.) are rendered by the platform operating system graphics library. There

were two major problems with this approach. The first is the lowest common denominator of graphics

and window functionality was provided and second all the applications took on the look and feel of their

native platform so you could not get applications to look (and even behave) the same across platforms

since it was their underlying operating systems APIs that was being used to draw and manage the

screen.

The class javax.swing.JFrame comes from the Swing library. In Java version 1.2, Sun

Microsystems introduced the Swing toolkit. Swing was first developed by the then Netscape

Communications Corporation in 1996. The goal was to develop sharper and more elegant looking GUI

components than what was provided by AWT. Swing was developed so that applications would appear

the same across different platforms. In addition, the look and feel was intended to be pluggable. The

library provided a richer set of widgets that were implemented strictly in Java.

The current version of Java handles more easily the mixing of components from both toolkits (that was

once a problem). The two libraries are not independent from each other as the class hierarchy diagram

below illustrates:

Figure 3 – AWT/Swing class hierarchy (from http://en.wikipedia.org/wiki/File:AWTSwingClassHierarchy.png)

Both AWT and Swing are now part of the Java Foundations Classes (JFC). The fundamental GUI object

shared by both AWT and Swing is the java.awt.Component class. A component is an object having

a graphical representation that can be displayed on the screen. So all the entities we see on a Java GUI

1 The first version of Java ran on the following platforms: Windows 95 and NT, Sun Solaris and later Mac OS 7.5.

http://en.wikipedia.org/wiki/File:AWTSwingClassHierarchy.png

3D Java Game Programming – Episode 1

5

screen derives from the component class. There are two types of components – lightweight and

heavyweight. A lightweight component is not associated with a native window (this is true for all Swing

components) and a heavyweight component is associated with a native window (this is true for all AWT

components). A container is just an object that can contain other components.

It is easy to tell the difference between classes that are associated with AWT from those that are

associated with Swing – all Swing classes start with the letter J (e.g. JComponent, JWindow, JFrame,

etc.). In addition, the AWT classes reside in the java.awt package and the Swing classes reside in

the javax.swing package.

Canvas

Figure 4 - From http://mainline.brynmawr.edu/Courses/cs110/fall2003/Applets/CanvasExample/CanvasExample.html

The Canvas component represents the area on the screen where your applications draw images,

buttons, text, missiles, bombs, and dogs! Applications (like our example) subclass the class Canvas in

order to gain access to the functionality offered by that class.

Typical use:

Table 2 - Typical use of Canvas

public class MyGreatGameDisplay extends Canvas {
}

This episode does not involve any painting to the screen but typically you would use the

paint(Graphics g) method to draw your blown up enemies on the screen (more on this in future

episodes2) if you were using AWT Frame to hold your window. Since we are using JFrame a Swing

class we should override paintComponent()method instead. In this version of the program we

create the Display class:

2 We will not be relying on paint() to do our actual drawing since games require we control when things are drawn
– more later…

http://mainline.brynmawr.edu/Courses/cs110/fall2003/Applets/CanvasExample/CanvasExample.html

3D Java Game Programming – Episode 1

6

public class Display extends Canvas {
 :
 :
}

It should be obvious why we are calling this class “Display” since it will handle the game display screen.

The first thing we will need is a window to display our game – hence the use of JFrame to hold our

Canvas.

JFrame

Figure 5 - JFrame class hierarchy

A Frame is a top-level window with a title and a border. The size of the frame includes an area

designated for the border. The dimensions of the border area may be obtained using the getInsets

method. Since the border area is included in the overall size of the frame, the border effectively

obscures a portion of the frame, constraining the area available for rendering and/or displaying

subcomponents to the rectangle which has an upper-left corner location

of (insets.left, insets.top), and has a size of width - (insets.left +

insets.right) by height - (insets.top + insets.bottom).3 What all this means is

that even if you created the frame to be WIDTH x HEIGHT your Canvas object will have less space than

that for drawing since the insets or window borders take room. The equations above detail how much

less. In a future, episode CHERNO will make adjustments to ensure the Canvas or drawing area matches

our desired WIDTH x HEIGHT specifications.

3 http://docs.oracle.com/javase/tutorial/uiswing/components/frame.html This whole section is from this site.

http://docs.oracle.com/javase/tutorial/uiswing/components/frame.html

3D Java Game Programming – Episode 1

7

A frame, implemented as an instance of the JFrame class, is a window that has decorations such as a

border, a title, and supports button components that close or iconify the window. Applications with a

GUI usually include at least one frame. Applets sometimes use frames, as well.

Here is a picture of the extremely plain window created by the FrameDemo demonstration application.

Figure 6 - FrameDemo window

The following FrameDemo code shows how to create and set up a frame.

//1. Create the frame.

JFrame frame = new JFrame("FrameDemo");

//2. Optional: What happens when the frame closes?

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

//3. Create components and put them in the frame.

//...create emptyLabel...

frame.getContentPane().add(emptyLabel, BorderLayout.CENTER);

//4. Size the frame.

frame.pack();

//5. Show it.

frame.setVisible(true);

Here are some details about the code:

//1. Create the frame.

JFrame frame = new JFrame("FrameDemo");

1. The first line of code creates a frame using a constructor that lets you set the frame title. The

other frequently used JFrame constructor is the no-argument constructor.

//2. Optional: What happens when the frame closes?

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

http://docs.oracle.com/javase/7/docs/api/javax/swing/JFrame.html

3D Java Game Programming – Episode 1

8

2. Next the code specifies what happens when your user closes the frame.
The EXIT_ON_CLOSE operation exits the program when your user closes the frame. This
behavior is appropriate for this program because the program has only one frame, and closing
the frame makes the program useless.

//3. Create components and put them in the frame.

//...create emptyLabel...

frame.getContentPane().add(emptyLabel, BorderLayout.CENTER);

3. The next bit of code adds a blank label to the frame content pane. If you're not already familiar

with content panes and how to add components to them, please read Adding Components to

the Content Pane.

//4. Size the frame.

frame.pack();

4. The pack method sizes the frame so that all its contents are at or above their preferred sizes.

An alternative to pack is to establish a frame size explicitly by

calling setSize or setBounds (which also sets the frame location). In general, using pack is

preferable to calling setSize, since pack leaves the frame layout manager in charge of the

frame size, and layout managers are good at adjusting to platform dependencies and other

factors that affect component size.

This example does not set the frame location, but it is easy to do so using either

the setLocationRelativeTo or setLocation method. For example, the following code

centers a frame onscreen:

frame.setLocationRelativeTo(null);

5. Calling setVisible(true) makes the frame appear onscreen. Sometimes you might see

the show method used instead. The two usages are equivalent, but we

use setVisible(true) for consistency's sake.

The program below creates a JFrame object and adds our canvas to the frame:

 Display game = new Display();
 JFrame frame = new JFrame();
 frame.add(game);

The next couple of instructions just set certain characteristics of our window:

http://docs.oracle.com/javase/tutorial/uiswing/components/toplevel.html#contentpane
http://docs.oracle.com/javase/tutorial/uiswing/components/toplevel.html#contentpane

3D Java Game Programming – Episode 1

9

 frame.setTitle(TITLE);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(WIDTH, HEIGHT);
 frame.setLocationRelativeTo(null);
 frame.setResizable(false);
 frame.setVisible(true);

The code above sets the title of the window, what action to take when the user clicks on the “close

window” icon, the size of our window, where to place the window on the screen, if our window is

resizeable, and then to make is visible to the user.

The following text presents more details on the other methods in our first episode:

setLocationRelativeTo

public void setLocationRelativeTo(Component c)

Sets the location of the window relative to the specified component. If the component is not currently

showing, or c is null, the window is placed at the center of the screen. The center point can be

determined with GraphicsEnvironment.getCenterPoint.

setResizable

public void setResizable(Boolean resizable)

Sets whether this frame is resizable by the user.

add

public Component add(Component comp)

Appends the specified component to the end of this container.

serialVersionUID?

There will be times when you will need to ‘save’ the state of a game. This will require that we save the
objects into tables or files and retrieve them later. The act of saving an object ‘state’ (the member
variable values) is called serialization. The act of restoring or retrieving saved objects from a file or table
is called deserialization.

The serialization runtime associates with each serializable class a version number, called a
serialVersionUID, which is used during deserialization to verify that the sender and receiver of a
serialized object have loaded classes for that object that are compatible with respect to serialization. If
the receiver has loaded a class for the object that has a different serialVersionUID than that of the
corresponding sender's class, then deserialization will result in an InvalidClassException. A serializable

3D Java Game Programming – Episode 1

10

class can declare its own serialVersionUID explicitly by declaring a field named "serialVersionUID" that
must be static, final, and of type long:

ANY-ACCESS-MODIFIER static final long serialVersionUID = 42L;

If a serializable class does not explicitly declare a serialVersionUID, then the serialization runtime will
calculate a default serialVersionUID value for that class based on various aspects of the class, as
described in the Java(TM) Object Serialization Specification. However, it is strongly recommended that all
serializable classes explicitly declare serialVersionUID values, since the default serialVersionUID
computation is highly sensitive to class details that may vary depending on compiler implementations,
and can thus result in unexpected InvalidClassExceptions during deserialization. Therefore, to guarantee
a consistent serialVersionUID value across different java compiler implementations, a serializable class
must declare an explicit serialVersionUID value. It is also strongly advised that explicit serialVersionUID
declarations use the private modifier where possible, since such declarations apply only to the
immediately declaring class--serialVersionUID fields are not useful as inherited members.

FROM: http://stackoverflow.com/questions/285793/what-is-a-serialversionuid-and-why-should-i-use-it

If the objects you create from the class can be saved or serialized to a file for later processing (e.g. the

user issues a “save game” operation you will want to save all the game objects) than you will want to

create a unique serialVersionUID for the objects associated with the class. Doing so allows you to

“check” if a future version of the class can handle the version saved to a file.

Improvements/Suggestions

You can skip this section. It discusses ways to ensure that the display area – the Canvas or JPanel

being used to display game elements has the desired size.

Old Java Style

I would have recommended another name for this class rather than Display. It will get confusing later

with the addition of a class called Render and Screen since they could all mean the same thing. The

Display class will be responsible for displaying our “Screen” to the actual screen or monitor

We will now explore interesting aspects of having a JFrame and placing components to the frame.

STEP 1:

Create a new package test.examples where we will place all our example side classes that are

unrelated to the video.

STEP 2:

Create the java class Board.java that holds our game drawing area – a JPanel.

http://stackoverflow.com/questions/285793/what-is-a-serialversionuid-and-why-should-i-use-it

3D Java Game Programming – Episode 1

11

Table 3 - Board.java

package test.examples;

import javax.swing.JPanel;

public class Board extends JPanel {

 public Board() {

 }
}

I prefer to use a JPanel with a JFrame but a JPanel is basically the same Swing equivalent to a

Canvas.

STEP 2:

Create the class MyCoolGame that pretty much performs all the work shown in the video.

Table 4 - MyCoolGame.java

package test.examples;

import javax.swing.JFrame;

public class MyCoolGame extends JFrame {

 public final int WIDTH = 300;
 public final int HEIGHT = 280;

 Board displayArea;

 public MyCoolGame() {
 // Create our board or display area
 displayArea = new Board();

 // attach it to the window
 add(displayArea);

 // set the window title
 setTitle("My Cool Game");

 // ensure that closing the window - closes the application
 setDefaultCloseOperation(EXIT_ON_CLOSE);

 // set the size of our window
 setSize(WIDTH, HEIGHT);

 // center the window in the middle of our screen
 setLocationRelativeTo(null);

 // don't allow users to resize our window

3D Java Game Programming – Episode 1

12

 setResizable(false);

 // show the window
 setVisible(true); }

 public static void main(String[] args) {
 MyCoolGame game = new MyCoolGame();
 }
}

STEP 3:

Build and run MyCoolGame.

Figure 7 - My Cool Game window

Even though we defined the frame to be 300 x 280 the canvas/jpanel or displayable area will be less

than this.

How do we know this to be true?

STEP 3:

Add the following new method to MyCoolGame class:

 public void printElementSizes() {
 System.out.println("Window size - width: " + this.getWidth()
 + " ;height: " + this.getHeight());
 System.out.println("Board size - width: " + displayArea.getWidth()
 + " ;height: " + displayArea.getHeight());
 }

3D Java Game Programming – Episode 1

13

The method printElementSizes() prints the width and height of the window and the board

components.

STEP 4:

Add the following line to the main method:

 public static void main(String[] args) {
 MyCoolGame game = new MyCoolGame();
 game.printElementSizes();
 }

STEP 5:

Run the program again.

Window size - width: 300;height: 280
Board size - width: 284height: 242

As you can see above the window frame has our desired width and height as defined in the program:

The display area is smaller because of the room taken up for the title and window borders.

What we should do is reset the window size to make our displayable area match our expectations of

being WIDTH x HEIGHT. The way to do this is to obtain the border values and re-adjusting the window

size. Here is how:

3D Java Game Programming – Episode 1

14

Figure 9 - Original window

STEP 6:

Add new code to MyCoolGame.java to ensure the window is sized to fit the display area we want.

Table 5 - New version of MyCoolGame.java

package test.examples;

import java.awt.Insets;

import javax.swing.JFrame;
import javax.swing.SwingUtilities;

public class MyCoolGame extends JFrame {

 private static final long serialVersionUID = 1L;

 public final int DISPLAY_WIDTH = 300;
 public final int DISPLAY_HEIGHT = 280;

 Board displayArea;

 public MyCoolGame() {
 // Create our board or display area
 displayArea = new Board();

 // attach it to the window
 add(displayArea);

Figure 8 - Adjusted window

3D Java Game Programming – Episode 1

15

 // set the window title
 setTitle("My Cool Game");

 // ensure that closing the window - closes the application
 setDefaultCloseOperation(EXIT_ON_CLOSE);

 // set the size of our window
 setSize(WIDTH, HEIGHT);

 // center the window in the middle of our screen
 setLocationRelativeTo(null);

 // don't allow users to resize our window
 setResizable(false);

 // show the window
 setVisible(true);

 // Adjust the window so that the board has the desired dimensions
 resizeToInternalSize(DISPLAY_WIDTH, DISPLAY_HEIGHT);

 }

 private void resizeToInternalSize(int internalWidth, int internalHeight) {
 Insets insets = getInsets();
 final int newWidth = internalWidth + insets.left + insets.right;
 final int newHeight = internalHeight + insets.top + insets.bottom;

 Runnable resize = new Runnable() {
 public void run() {
 setSize(newWidth, newHeight);
 }
 };

 if (SwingUtilities.isEventDispatchThread()) {
 try {
 SwingUtilities.invokeAndWait(resize);
 } catch (Exception e) {
 // ignore ...but will be no no if using Sonar!
 }
 } else {
 resize.run();
 }

 validate();

 }

 public void printElementSizes() {
 System.out.println("Window size - width: " + this.getWidth() + "
;height: " + this.getHeight());
 System.out.println("Board size - width: " + displayArea.getWidth() + "
;height: " + displayArea.getHeight());
 }

3D Java Game Programming – Episode 1

16

 public static void main(String[] args) {
 MyCoolGame game = new MyCoolGame();
 game.printElementSizes();
 }
}

 The new version of MyCoolGame.java adds a new method resizeToInternalSize that makes the

adjustment to the displayable area (or in this case our Canvas) by adjusting the windows width and

height by taking into account the actual border values. How it actually gets this done looks a bit esoteric

and complex since we are creating a thread to perform the adjustment. The next episode will discuss

threads and the EventDispatcher in more detail so we will not discuss this code until then. Suffice it to

say that when you create a GUI program that there is a thread that manages when the GUI elements are

drawn (this is out of your hands!) and we are making adjustments to our window when that thread is

running.

When you run the new version of the program the console will display:

Window size - width: 306 ;height: 308
Board size - width: 300 ;height: 280

As you see our “display area” has the desired width and height – not our window.

Note: The above is additional material not discussed in the video episodes. I learned this technique

from the book Java 1.4 Game Programming by Andrew Mulholland and Glenn Murphy. The book did not

do so well when released mostly because it made the same mistake most books and video tutorials do –

try to teach java and game programming at the same time. If someone new to programming ever gets to

the pages discussing the game and graphics they would have been totally clueless and I imagine ready to

pull out their hair. The readers who already knew how to code would have been equally frustrated and

ready to pull their hair having to go through two hundred pages before getting into anything related to

creating a game. Having said that I enjoyed the book and found many of the chapters worthwhile in

creating 2D games. It would have been a GREAT book if it would have immediately focused on games

and actually have the users build a classic 2D game from beginning to end rather than just presenting

the ideas and sample programs. You can actually find the book online. I should have a link somewhere

on brainycode.com

What is going on?

The code above is best explained by the oracle documentation on Swing:

3D Java Game Programming – Episode 1

17

In summary, this episode created a simple GUI window that will be the foundation of our 3D java

application as we add classes and functionality.

New Java Way (2017)

Today it would appear the need to calculate the insets is no longer required. If you adhere to the

following guidelines you will get a drawing Canvas that is exactly the WIDTH and HEIGHT you desire

without requiring too much work:

1. Create the JPanel and set it to the desired WIDTH and HEIGHT

2. Add to the JFrame setting the preferred dimensions to the WIDTH and HEIGHT of the JPanel

component

3. Use SwingUtilities to create the GUI within the Swing thread.

STEP 7:

We will update Board.java to give it the desired size:

Table 6 - Board.java (final for this episode)

package test.examples;

import java.awt.Color;
import java.awt.Dimension;

import javax.swing.JPanel;

public class Board extends JPanel {

 private static final long serialVersionUID = 1L;

 public static final Color BACKGROUND_COLOR = Color.WHITE;

3D Java Game Programming – Episode 1

18

 public Board() {

 }

 public Board(int width, int height) {
 setBackground(BACKGROUND_COLOR);
 setPreferredSize(new Dimension(width, height));
 }
}

We add a new constructor where the client provides the desired width and height of the display area.

We also create a default background color and set the Board class to use it. The preferred size of the

Board is specified.

STEP 8:

Copy the class MyCoolGame MyCoolGame2.

Table 7 - MyCoolGame2.java

package test.examples;

import javax.swing.JFrame;
import javax.swing.SwingUtilities;

public class MyCoolGame2 extends JFrame {

 private static final long serialVersionUID = 1L;

 public final int DISPLAY_WIDTH = 300;
 public final int DISPLAY_HEIGHT = 280;

 Board displayArea;

 public MyCoolGame2() {
 // empty constructor
 }

 public void setupGame() {
 // Create our board or display area
 displayArea = new Board(DISPLAY_WIDTH, DISPLAY_HEIGHT);

 // attach it to the window
 add(displayArea);

 // set the window title
 setTitle("My Cool Game 2");

 // ensure that closing the window - closes the application

3D Java Game Programming – Episode 1

19

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 // Size the window to fit the preferred size of its components
 pack();

 // center the window in the middle of our screen
 setLocationRelativeTo(null);

 // show the window
 setVisible(true);
 }

 public void printElementSizes() {
 System.out.println("Window size - width: " + this.getWidth() + "
;height: " + this.getHeight());
 System.out.println("Board size - width: " + displayArea.getWidth() + "
;height: " + displayArea.getHeight());
 }

 public static void main(String[] args) {

 MyCoolGame2 game = new MyCoolGame2();
 // Start the GUI work in a thread since Swing is
 // not thread-safe
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 game.setupGame();
 game.printElementSizes();
 }
 });
 }
}

3D Java Game Programming – Episode 1

20

Figure 10 - MyCoolGame2

The code is simpler in that the window insets are not calculated in order to adjust the window size,

rather the creation of the window and its elements are packaged into its own method setupGame()

and is invoked using SwingUtilities.

The pack() JFrame method instructs the window to size itself to fit the preferred size of all its

components.

Finally in this final program we see the following being displayed:

Window size - width: 316 ;height: 318
Board size - width: 300 ;height: 280

3D Java Game Programming – Episode 1

21

References
 http://en.wikipedia.org/wiki/Abstract_Window_Toolkit

 http://home.cogeco.ca/~ve3ll/jatutorg.htm

 http://docs.oracle.com/javase/1.4.2/docs/api/java/awt/Canvas.html

 http://en.wikibooks.org/wiki/Java_Programming/Canvas

 http://docs.oracle.com/javase/tutorial/uiswing/components/frame.html

 http://www.javablogging.com/what-is-serialversionuid/

 http://stackoverflow.com/questions/285793/what-is-a-serialversionuid-and-why-should-i-use-it

 Mullholland, Andrew. Java 1.4 Game Programming. Wordware Publishing. 2003. ISBN: 978-

1556229633

http://en.wikipedia.org/wiki/Abstract_Window_Toolkit
http://home.cogeco.ca/~ve3ll/jatutorg.htm
http://docs.oracle.com/javase/1.4.2/docs/api/java/awt/Canvas.html
http://en.wikibooks.org/wiki/Java_Programming/Canvas
http://docs.oracle.com/javase/tutorial/uiswing/components/frame.html
http://www.javablogging.com/what-is-serialversionuid/
http://stackoverflow.com/questions/285793/what-is-a-serialversionuid-and-why-should-i-use-it

